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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 551

TA_K TESTS OF T'qREE _,IODEL$ OF FLYING-BOAT HULLS

OF THE POINTED-STEP TYPE WITH DIFFERENT ANGLES

OF DEAD RISE - N.A.C.A. NODEL 85 SERIES

By John R. Dawson

S UM_I__.RY

The results of tank tests of three models of flying-

boat hulls of the pointed-step type with different angles

of dead rise are given in charts and are compared with re-

sults from tests of more conventional hulls. Increasing

the angle of dead rise from 15 ° to 25°: had little effect

on the hump resistance; increased the resistance through-

out the planing range; increased the best trim angle; re-

duced the maximum positive trimming moment required to ob-

tain best trim angle; and had but a slight effect on the

spray characteristics. For approximately the same angles

of dead r_se the resistances of the pointed-step hulls

were considerably lower at high speeds than those of the

more conventional hulls.

INTRODUCTION

N.A.C.A. model 35 is a pointed-step flying-boat hull

of high length-beam ratio designed particularly to give

low resistance at high speeds. Tank tests of this model

have been reported in reference 1. It was believed that

by msking landings on the point of the step a low angle

of dead rise could be used with the pointed-step type of

hull. There has, however, been considerable criticism of

the low angles of dead rise incorporated in the pointed-

step models that have been tested at the tank. One criti-

cism was that, in view of the large bottom pressures that

have been found in delayed rake-offs of seaplanes with

higher angles of dead rise, the low angles of dead rise

of these models would probably result in excessive bottom

pressures during take-off.
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Tests of planing surfaces made at the N.A.C.A. tank

(reference 2) show that increasing the angle of dead rise

increases the resistance in the planing rsnge, but these

data are strictly applicable to a flying-boat hull only

when the form of the bottom of the forebody is similar to

the planing surfaces tested and when the afterbody is com-

pletely clear of the water. The afterbody of model 35 Is

clear of the water when planing at best trim angle, but

the forebody ends with a step that is pointed in "plan form

whereas the sterns of the planin_ surfaces were cut off

square.

Because it was believed that even with a high angle

of dead rise the pointed-step-type hull would have rela-

tively low resistance at high speeds, tank tests were made

of two additional modelswlth higher angles of dead rise.

TEE MODELS

Three different models were used in the tests, model

_5 (15 o angle of dead rise), model 35-A (20°), and model

35-B (25o). Model 35 is the same model that was used in

the test reported in reference I. }_odels 35-A and 35-B

were derived from model 35 by increasing the angle of dead

rise of that portion of the hull of which the angle of dead

rise is constant and by raising all points on "the buttock

lines in proportion to their heights above the straight

portion of the forebody keel. The only other change result-

ing from the _ change of angle of dead ri_e is the raising

of the bow, which is necessary to compensate for the higher

chines caused by the increased angle of dead rise. The

tail appendage, which is usually added to a hull for the

purpose of carrying the tail surfaces of the airplane, was

left off for simplicity. The plan form is the same for

each model (fig. l) ; the offsets are given in tables I to

III.

In accordance with the usual practice at the N.A.C.A.

tank, the model_ were made of laminated wood, sanded,

painted, and rubbed to _ive a smooth surface.

APPARATUS AND PROCEDURE

The N.A.C.A. tank, its carriage, and some of the
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testing apparatus are described in reference S. The tow-
in_ gear used is generally similar to that described in
reference 2, but ha_s a very sti_ff'_spring for mea_urin_
trimming moments " The deflections of this spring are
measured on a dial gage and are So small that the trim
angle remains fixed within the accuracy to which it may
be determined. The towing ge._r was restrained from lat-
eral movement by guide wheels attached to the gear and
allowed to roll on a vertical staff rigidly attached to
the carr is.ge.

The test program followed the general method, in
which the model is towed at a succession of fixed trim
angles with a number of const_.nt loa_s, and a sufficient
number of trim anglesare used to determine _the trim an-
_le that gives minimum resistance (called "best trim an-
gle"). The models were tested over an unusually wide
range of loads and speeds because they are suitable for
seaplane floats as well ss for flying-boat hulls.

Although model 35 had been tested previously, the
test was repeated to insure identical testing conditions
for the three models. _iore points were obtained in the
present tests than in the original test of model 85. The
increased capacity of the moment-measuring gear eliminat-
ed extrapolation, which was necessary in some cases with
the original tests.

RESULTS

Test Data

Resistance (including the air drag of the model),
trimming moment, and draft are plotted against speed with
load as parameter in fixtures 2 to 19. Each f_gure shows
the data for one trim angle. The center of moments used
in the tests is shown in figure I; moments tending to
raise the bow are considered positive. All drafts are
measured at "theaft_er end of the step as it is a conven-

ient point' of reference although at high trim angles the

sternpost is deeper in the water.

Static drafts and trimming moments for models ,35-A

and SS-B are given in figures _0 and 21, in which trim-

ming moment is plotted against trim angle with displace-

ment as parameter, and drafts are plotted against dis-
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placement with trim angle as parameter. These data may
be used in the determination of load water lines on the
hulls at rest. No static curves are given for model 35
because they are already nvaiiable in reference 1.

Nondimensional Data.

In order to eliminate the trim-angle variable, the
trim an_le that gives minimum resistance is determined by
cross-plotting resistance against trim angle with load
and speed as parameters. Speed, load, minimum resistance
and the trimmin_ moment to obtain minimum resistance are
converted to the followin_ nondimensiona! coefficients:

V
Speed coefficient,

Load coefficient,
A

CA = ---
wbs

Resistance coefficient,
R

CR = __
wb 3

Trimming-moment coefficient, CM -
wb _

where

, is speed, ft./sec.

g, acceleration of gravity, ft./sec.

b, maximum beam of hull, ft,

A, load on water, lb.

w, specific weight of water, Ib./cu.ft. (w = 63.5

lb./cu.ft, for the water in the }T.A.C.A.

tank luring these tests).

R, resistance, lb.

14, trimming moment, lb.-ft.

Any other consistent set of units may, of course, be used.
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The data for best trim an_le converted to these coef-
ficients are plotted in figures 22 to 33 for all three

models. In figure_22 to 2,4 the minimum value of CR is
plotted against CV with CA ss parameter; in figures

25 to 27 the minimum value of CR is plotted against CA

with CV as parameter. The curves of figures 25 to 27
are more useful in makin_ take-off calculstions than those

of figures _22 to 24 because CR for any vslue of CA can

be read directly. In fi_,ures 28 to 30, the best trim an-

gle T o is plotted against CV with CA as parameter;

in figures 31 to 33 the trimming-moment coefficient CN

required to obtain _o is plotted against C V with CA

as Parameter.

-,_Teither To nor _N is shown for values of CA

_reater than 1.2 because the curves of resistance against

tr'_m s,ngle for the 120-pound load did not consistently

show a minimum for any of tl_e models tested. In the low-

speed rsnge where this condition occurs the best trim an-

gle is relatively unimportant because the resistance does

not vary greatiy with trim angle at those speeds. For

load cof_fficients ._.reater titan 1.2 the plotted values of

CR correspond to the least resistance obtained in the

tests whether they were shown to be minimums or not. In

take-off calculations, the T o for values of CA great-

er than 1.2 may be assumed to _oe about the same as fo

for CA = 1.2. The resistance st any trim an_le may, of

course, be determined by cross-plotting the curves of test

data.

DISCUSSION OF RESULTS

The present data for model 35 ckeck reasonably well

with the data from the original test published in refer-

ence I. The resistance curve, however, comes to a rather

criticq! peak at the hump an4 some lsr_e discrepancies

are found at the heaviest loads in this re_Tion; the hump

is _omewhat better defined in the present tests by a

closer spacing of test points. The large discrepancies

found in the maximum positive trimming-moment coefficient

and the maximum best trim an_le are caused by extrapola-

tion of data in the original tests.
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In figure 34 a comparison is made of the resistance
coefficients at best trim angle for the three models test-
ed. In this figure CR for all three models is plotted
against CV at several values of CA. The differences
in the resistance at the hump are small considering the
difficulty of obtaining the absolute maximum where the
hump is critical. In the planing region, however, there
is a well-defined increase in resistance with increased
angle of dead rise, the same trend that was observed in
the tests of planing surfaces. At vslues of CV greater
than about 4 the afterbodies of these models are complete-
ly clear of the water when the models are running at best
trim angle so that the models may be considered as single,
pointed-s_crn planing surfaces throughout the high-speed
range.

Figures 28 to S0 show that the best trim angle
throughout the planing range is increased as the angle of
dead rise is increased, i_[aximum positive values of CM
at best trim angle are plotted in figure G5 for the three
models, Increase in angle of dead rise caused a decrease
in maximum positive Ci_ for all loads, due in part to the
increased best trim article; The maximum moments all occur
at a somewhat higher speed than that at which the resist-
ance hump occurs.

At the hump speeds the spray from all three models
was nearly the same. At higher speeds, an increased angle
of dead rise caused a slight increase in the angle at
which the spray was thrown upward.

In reference 1 some directional instability was noted
for model 85 at low speeds. Inasmuch as the towln_-gear
arrangement used in the present tests prevented the models
from showing this tendency, the restraining rollers on the
gear were later removed and models 35-A and S6-B were run
at constant speed throughout the range in which the direc-
tional instability is likely to occur. Although some di-
rectional instability was noted on models 35-A and 35-B,
the range of speeds in which it occurred appeared to be
shorter than for model 35.

A comparison of the resistance of models 35,A and
35-B with the resistance of more conventional forms having
corresponding angles of dead rise should show the relative
value of the pointed-step-type hull.
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In figure 36 models 35-A and 40-_C are compared by
plotting CR against CV for several values of CA. The
angle of dbad rise for both hulls is 20 °. Mo&el 40-AC
(reference 4) is one of a series designed for small flying
boats and amphibians and has a high length-beam ratio
(5.47 excluding the tail appendage). It has a convention-
al main step and the afterbody is pointed in plan form
similar to many existing American hulls.

The hump resistance of model 35-A is less than that
of model 40-AC at the light loads and greater at the heavy
loads but it occurs at a lower speed so that more thrust
would be Available at the hump for model 35-A. Just after
the hump the resistance of model 40-AC decreases rapidly
until it is below thst of model 35-A except at the very
light loads. As the speed is increased further the resist-
ance _f model 40-AC increases more rapidly than the resist-
ance of model 35-A so that at high speeds the pointed-step
hull is considerablybetter,

In figure 37 models _5-B and ll-C are compared by
plotting OR against CV for the high-speed range. The
angle of dead rise for model ll-C is 22-i/2 ° and for model
35-B it is 25 °. _odel !I-C (reference 5)is similar in
type to model 40-AC but its length-beam ratio is consider-
ably smaller. In a comparison of models of widely differ-
ent length-beam ratios the effect of length-beam ratio
generally tends to obscure other effects. At high speeds,
however, the afterbody of the pointed-step hull is clear
when running at best trim angle and a large portion of the
forebody is out of the water and therefore not effective.
Under these conditions changes in the length of the hull
have a negligible effect on the water resistance and the
comparison shown in figure 37 is hardly affected by the
large difference in the length-beam ratios of the two mod-
els.

Thissecond comparison shows in the high. speed range
the same tendencies that were noted in figure 86. Thus it
appears that the pointed-step-type hull, even with a high
angle of dead rise, isparticularly adapted to designs
with high get-away speedso

CONCLUS10NS

I. The tests on the model 35 series show that increas-
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in_= the dead rise causes the following changes in chara9 .-
teristics :

(a) The resistance throughout the planing range is
increased but the hump resistance is only
slightly changed.

(b) The spray characteristics are not changed greatly
but at high speeds the spray is thrown up at a
slightly steeper angle.

(c) The best trim angle i_ increased.

(d) The maximum positive trimming moment required to

obtain best trim angle is decreased.

2. The pointed-step-type hull, even with a high an_le

of dead rise, appears to be especially suited for seaplanes

with high get-away speeds.

Langley Zemorial Aeronautical Laboratory,

National Advisory Committee for Aeronautics,

Langley Field, Va., November 15, 1935.
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Flguze 17.- Model 35-_. _eeletsaee, tztieAal leieat, and &raft. _- = 9°.
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Figure 30.- Model 38-B. Yaziation of best trim ea_le Jrlth Oy.
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Figure 32.- Model 35-A. ¥&:lst%ol of 06 at beet tz_m _a_le with 0 v.
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